НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ







предыдущая главасодержаниеследующая глава

ГЛУБИННЫЙ МИКРОСКОП

 Но как сломать печать на книге, в которой вместо листов ходячие волны и которая имеет несколько тысяч футов толщины?

М. Ф. Мори

Глубинный микроскоп
Глубинный микроскоп

После знакомства с техническими особенностями научно-исследовательских субмарин логичен вопрос: как и когда можно использовать их в морских исследованиях? Какие новые открытия позволят они совершить?

Хочется заранее предостеречь всех поклонников исследовательских подлодок от преувеличения их роли. Сегодня эти лодки пока лишь дополняют грандиозную работу, выполняемую на морях и океанах надводными средствами. А что будет завтра? Задача состоит в том, чтобы определить четкие перспективы их развития и использования.

Итак, на что же способны исследовательские подводные лодки? По-видимому, на многое. Чтобы не потеряться в этом многом, рассмотрим пять основополагающих преимуществ подлодки как исследовательского судна.

Преимущество первое. Подводное судно позволяет безопасно доставить аппаратуру и исследователей на глубину вплотную к объекту наблюдений или приблизить к нему.

То есть подводная лодка - это не что иное, как подвижный глубоководный герметичный носитель. В пределах своих технических возможностей он может быть спилотирован на дно или в толщу воды: под ледовый покров, в глубинный рассеивающий слой, в места со сложным рельефом дна. Ему подвластны глубины, не доступные водолазу или батисфере.

Исследователь получает идеальную возможность наблюдать самому, тут же делать измерения приборами. Многое, что было получено другими способами, теперь можно проверить лично. Благодаря этому традиционный метод исследования «наугад», то ебть с помощью опускаемых на тросе приборов, получает громадное подспорье.

Присутствие под водой исследователя придает наблюдениям новое качество: высокую достоверность и быстрое получение результатов. Многие сомнения или догадки разрешаются на месте. Более того, человек тут же может принять решение повернуть подводную лодку, направить ее в другое место. Поэтому все измерения или сбор образцов можно делать селективными, то есть выборочными. Исследователь-подводник способен точно размещать и ориентировать под водой научную аппаратуру и контролировать ее работу. Например, если нужно взять пробу воды у самого дна, входное отверстие пробоотборника с помощью манипулятора можно нацелить так, что оно не коснется ила и не вызовет мути. Такую же операцию можно провести и с надводного корабля, а лодка снизу будет ее по акустическому телефону направлять и корректировать.

Морские геологи из американского института Скриппса, находясь на борту подлодки «Дениза», обнаружили у берегов Калифорнии неизвестное подводное течение. Под их наблюдением с подводного судна опустили измеритель скорости течения. Через иллюминатор исследователи имели возможность контролировать эту операцию. Они проследили, чтобы прибор не попал за какой-нибудь большой камень или в углубление, где показания оказались бы неверными. Так была точно измерена скорость, составившая около четверти узла.

Важно, что в руках исследователя не только носитель, способный перемещаться в трех измерениях. Лодка способна двигаться быстрее, медленнее, останавливаться (зависать на месте, на подводном якоре, на гайдропе, ложиться на грунт), дрейфовать в водной массе. Она позволяет возвращаться в прежнюю точку, отмеченную гидроакустическим или другим указателем, чтобы осмотреть тщательнее и определить, что и насколько изменилось.

И вот здесь, пожалуй, уместно привести слова заведующего кафедрой океанологии МГУ профессора А. Д. Добровольского по поводу практики океанологических наблюдений: «К сожалению, очень редко работы ведутся в соответствии с принципами прослеживания неожиданно обнаруженного явления; преобладает стремление выполнить заранее намеченный план - это свойственно не только американским исследованиям, но и нашим».

И действительно, планируя подводные наблюдения на «Северянке», мы обнаружили, что не в состоянии предсказывать что-либо наверняка. Поэтому каждый рейс «Северянки», выполнявшийся по программе, был в то же время и научной разведкой.

В самом деле, как поступать, если что-то встретится вне программы? В условиях, предоставляемых подводной лодкой, исследователь может изменять содержание наблюдений, комбинацию и режим работы приборов. Вся система может быть тут же «запрограммирована» на изучение нового объекта. При этом для получения результатов возможны любые импровизации, неосуществимые при слепом погружении аппаратуры с надводного судна. Словом, подводная лодка позволяет перейти от пассивного сбора научной информации к постановке управляемого эксперимента.

И еще один важный момент. Некоторые подводные приборы нуждаются в частой корректировке, другие - в периодической калибровке, настройке и даже в ремонте. Только человек, находящийся рядом, может среагировать на непредвиденные или необычные отклонения в показаниях приборов и принять решение на месте.

Таким образом, человек (исследователь) и машина (подлодка) выступают как единая система, позволяющая извлечь максимум информации из приборов и умения, способностей и знаний человека.

Важно еще, что результаты ценны и своим комплексным характером - ведь наблюдение за любым объектом может сопровождаться измерением разнообразных характеристик окружающей среды.

Преимущество второе. Подводное судно доставляет измерительную аппаратуру прямо к объекту, а это повышает точность измерений и уменьшает их трудоемкость.

В самом деле, ошибки в показаниях многих опускаемых с надводного судна приборов и устройств растут с глубиной.

С возрастанием измеряемой грубины падает точность эхолотов. Ошибка эхолотов увеличивается, кроме того, и в случае изрезанного или наклонного дна. На ее величину также влияет и изменение плотности морской воды. Так, для глубины 1000 метров ошибка может составить 40 метров, то есть 4 процента измеряемой величины. Профиль дна на эхограмме обозначается неверно: глубины неточны, уменьшены углы наклона дна, сглажены неровности.

Правда, многие исследователи смирились с «пороками» эхолота, считая, что они перекрываются такими его качествами, как автоматическое действие и наглядность изображения результатов. А если поставить эхолот на подводной лодке? Погружаясь, она сокращает глубину, приближает приемо-излучающую систему эхолота к объекту, искажения в показаниях уменьшаются.

Приближать эхолот нужно еще и потому, что с возрастанием измеряемой глубины ослабляется эхо-сигнал. Он может ослабнуть настолько, что его нельзя будет уловить. В океане существует целая группа факторов, ослабляющих звуковую энергию. Ока теряется при переходе сигнала через слой скачка плотности; ослабляющее влияние оказывают также и волнение моря, и насыщенность верхнего слоя воды пузырьками воздуха, примерно до глубины 50 метров, и, наконец, планктон, концентрирующийся главным образом тоже в верхних слоях воды до 300 метров. Подводные лодки, движимые электроэнергией, имеют в отличие от надводных судов сравнительно небольшой уровень собственных шумов. Чем не идеальные условия для изучения в океане звуков различного происхождения?

И еще одно: установка приборов на наружной части подлодки освобождает от необходимости думать о надежности лебедок, тросов, кабелей, не потеряется ли проба при подъеме, не изменится ли ее качество, то есть о том, что обычно волнует на надводных судах. А ведь и с подводной лодки можно опускать приборы на тросе еще глубже, за пределы ее погружения. Свердруп описывал устройство шлюзового колодца «Наутилуса», предназначенного для этого. Опускать приборы с подлодки можно независимо от погоды.

Преимущество третье. Движущееся подводное судно позволяет делать непрерывные комплексные измерения в трехмерном пространстве. Как это понять?

Обычно надводное научно-исследовательское судно позволяет выполнить две гидрологические станции в сутки. Так называется остановка в океане для выполнения измерений. При этом невозможно опустить за борт сразу все многочисленные приборы - не хватит места на палубе, да и лебедок маловато. Кроме того, метод станций не позволяет составить точную картину об окружающем пространстве, то есть обладает пониженной информативностью. Другое дело подводная лодка. Ее можно направить любым курсом: вверх, вниз, вбок, вперед и при этом непрерывно измерять и регистрировать недоступные глазу физические и химические характеристики среды: температуру, соленость, электропроводность, радиоактивность и многое другое.

Для этого на лодку ставят разную аппаратуру. Но любой ее вид содержит источник питания, датчики и регистраторы. Представьте: лодка идет, приборы работают и исследователь сразу же получает данные о распределении многих физических и химических полей в океане. Есть приборы, которые автоматически вычерчивают графики распространения таких полей.

Разумеется, в пределах глубины погружения лоДки и чувствительности приборов.

А если поставить на подлодку фильтр с ионитами, как это делают на надводных кораблях, то можно определять концентрацию растворенных в воде элементов (стронция, висмута, селена, меди, железа, алюминия, цинка, драгоценных металлов) не только на поверхности, но и на глубине. Интересно, что единственный непрерывный температурный профиль от поверхности до самой большой в океанах глубины 10 919 метров был получен в 1960 году с помощью исследовательской подводной лодки «Триест».

Совершив посадку на грунт или став на подводный якорь, подводное судно можно использовать и как многосуточную станцию, иначе говоря, как подводную обсерваторию. Тогда можно, например, измерять элементы внутренних волн (Как известно, на разделе между двумя слоями разной плотности, например двумя слоями с разной температурой и соленостью, могут возникать волны и внутри океана, как обычные, так и длинные, со скоростью, не превышающей 2 узлов, но большой высоты (до 80 метров). Обнаруживаются с помощью длинных рядов измерений температуры и солености), период которых в большинстве случаев определяется часами, а иногда даже днями.

Преимущество четвертое. Подводное судно позволяет получать информацию, которая недоступна для других средств, а также дает возможность применить новые методы для получения известных данных.

Если сопоставить подводные фотоснимки с увиденным в иллюминатор подводной лодки, то сравнение будет не в пользу фотоаппарата. Оказывается, человеческий глаз лучше разбирается в деталях и в цвете. Часто некоторые мелкие морские организмы, легко опознаваемые через иллюминатор подлодки, были неразличимы на фотопленке. Но фотографировать нужно. И лучше это делать с подлодки, чем опускать фотоаппарат на тросе, так как исследователь сам способен выбрать объект съемки, определить освещенность, установить фокусное расстояние. То же и с киносъемкой. Убедительное этому доказательство - кинокадры, снятые на недоступных водолазам глубинах с подводных лодок «Северянка» и «Дениза».

Хуже, чем глаз, различает предметы и передающая телевизионная трубка. Но все-таки поворотная телевизионная камера, если ее установить на подлодке, может увеличить поле и дальность зрения наблюдателя, ограниченное иллюминаторами. Ведь существуют же подводные лодки, где конструкторы вместо иллюминаторов предусмотрели только телевизионные «окна» в подводный мир.

Немало придонных живых существ благодаря окраске и форме так могут слиться с фоном, что нет никакой возможности их обнаружить, не заставив их каким-то образом сдвинуться с места. В апреле 1959 года в Териберской губе мы именно таким образом обнаружили камбалу и крабов. В поисках промысловой рыбы в районе Мурманского побережья мы несколько раз садились на грунт. Однажды, как только осело облако частиц, вызванное прикосновением лодки к грунту, наблюдавшие в иллюминатор обратили внимание, как во многих местах неподвижное до этого дно «ожило». С него медленно поднимались имеющие такую же, как и грунт, окраску, похожие на лепешки камбалы и, энергично двигая хвостами, устремлялись под корпус «Северянки». Невозможно было заметить и крабов до того момента, пока и они не начали ползти под лодку. По-видимому, и камбалы, и крабы под корпусом лодки искали защиту от проникающего сквозь толщу воды дневного света, который мог действовать на них раздражающе. Известно, что камбала и краб могут изменять окраску. Все зависит от характера дна, от биологического состояния животного, его пола и возраста.

Интересный факт приводят американские исследователи, работавшие у Калифорнийского побережья. Бурное развитие фитопланктона в этих водах заметно ослабляет проникновение солнечного света, и уже на 180 метрах его уровень может быть ниже порога чувствительности человеческого глаза.

В этой тускло-зеленой от планктона воде обитает зушожество совершенно прозрачных живых организмов. Ни на фото-, ни на кинопленку заснять их практически не удается, а между тем через иллюминаторы эти живые существа наблюдаются легко.

Если опуститься глубже, в сумеречную зону, то там только наблюдатель способен различить цвет биолюмииисцентных вспышек (Биолюминисценция - свечение живых организмов), оценить их продолжительность, интенсивность, удаленность, прикинут!» объем концентрации и увидеть, кто же испускает свет. Приборы здесь, пожалуй, пока не справятся.

Когда сумерки переходят в темноту, надо включать искусственное освещение. Но даже в прозрачной воде, где можно осветить большие участки дна, фотосъемка бывает затруднена или попросту невозможна. Дело в том, что морское дно - плохой отражатель света. А это означает, что изображение будет, как говорят фотографы, вялым. Подсчитано, что суммарная площадь морского дна, сфотографированного к сегодняшнему дню при помощи дистанционных камер с надводного корабля, гораздо меньше той, которую можно осмотреть и снять на кинопленку за одно погружение движущейся подводной лодки.

Офиуры. Так называются эти, похожие на морских звезд, глубоководные обитатели дна океанов. С помощью замедленной киносъемки через иллюминатор совершившей посадку на грунт подводной лодки впервые удалось запечатлеть и воссоздать на рисунке траектории их движения
Офиуры. Так называются эти, похожие на морских звезд, глубоководные обитатели дна океанов. С помощью замедленной киносъемки через иллюминатор совершившей посадку на грунт подводной лодки впервые удалось запечатлеть и воссоздать на рисунке траектории их движения

Уже говорилось о том, что определять распространение и концентрацию планктона традиционными методами можно лишь приблизительно. Эти мелкие и мельчайшие живые существа часто сосредоточиваются на границе слоев воды с разной плотностью. Обитатели средних глубин дрейфуют хаотично, ориентируя тело произвольно, вне зависимости от течения и влияния силы тяжести. Увидеть это можно из подводной лодки.

Из «Северянки» мы видели, что планктон в море распределяется пятнами. Как же определять его количество и состав? Единственным выходом представляется непрерывное измерение распространения планктона в пространстве по изменению освещенности с помощью фотометра с движущегося подводного судна. А качественный состав можно будет определять на глаз через иллюминатор или беря пробы воды. То есть создается уникальнейшая возможность зондирования биологического параметра.

Все это можно будет делать и подо льдом. Интересно мнение X. Свердрупа, высказанное еще в 30-х годах, о том, что условия для океанографических работ в арктических морях много благоприятнее на подводной лодке, нежели на обыкновенном судне. По-видимому, это мнение укрепилось после того, как норвежскому исследователю все-таки привелось заглянуть под зоду. Это случилось, когда удалось затолкнуть под лед нос «Наутилуса». Нескольких минут, проведенных таким образом подо льдом, оказалось достаточно, чтобы X. Свердруп мог заключить: «Я был поражен, как много света проникало к нам не только сквозь воду, но и сквозь лед. Над нами вздымался лед в 3 м толщины, и все-таки мы могли видеть на расстоянии 20-30 м от нижнего глазка». Это впечатления. А вот вывод: «Самый лед был настолько прозрачен, что я положительно уверен в том, что подводная лодка не пойдет в темноте, если мы когда-нибудь доживем до плавания подо льдом на подводной лодке».

Теперь два слова о взятии проб внутрь лодки. В шлюзовой камере их можно сохранить и анализировать под давлением, равным забортному. Снижение давления до атмосферного может привести к неверным результатам. Так, во время эксперимента с советским пневматическим подводным домом «Спрут» определялось содержание кислорода в воде. В пробе, обработанной на берегу, оно составляло 4,7-5,2 мл/л, а в анализе, выполненном в подводном доме (то есть под давлением), - 5,7-6,5 мл/л.

Существует мнение, что науке до сих пор известно не более 10 процентов бентических (Бентические - населяющие дно водоема) животных, главным образом относительно мелководных. До остальных 90 процентов пока еще не добрались. И опять, чтобы решить эту проблему, мы с надеждой смотрим на подводное судно.

На дне непочатый край работы. Необходимо, в частности, исследовать и сообщества животных и растений, и микроформы подводного рельефа, нефиксируемые эхолотами, и состав грунтов. Интересно, что по ориентации донных организмов можно определять направление и скорость течений.

Кстати, исторические свидетельства относительно господствовавших в свое время течений и других условий среды были зарегистрированы по ориентации остатков отмерших организмов, имеющих скелет или жесткую структуру, например, таких, как живущий колониями веерный коралл.

К микроформам подводного рельефа относится, в частности, рябь, возникающая на песчаном грунте. Эти волнообразные отметки, оставляемые движением придонных масс воды,- выразительная характеристика силы и направлений господствующих течений.

Удивительно, что знаки ряби встречаются на глубинах гораздо больших, чем это можно было бы объяснить, опираясь на известные данные. Например, такие знаки с одинаковой длиной волны около 5,2 метра и амплитудой 1,2 метра были обнаружены на большом пространстве через иллюминаторы исследовательской подводной лодки в Средиземном море к югу от острова Капри на глубине 3264 метра. До этих наблюдений считалось, что глубинные воды в Средиземном море очень спокойны. И как бы в подтверждение, что это не так, подводная лодка «Триест» в этом районе попала в водоворот и была повернута на 180 градусов вокруг вертикальной оси.

Микроформы рельефа могут также создаваться и внутренними волнами, возникающими в толще воды и не проявляющимися на поверхности моря.

Пожалуй, именно с подводной лодки удобнее всего наблюдать так называемые мутьевые течения. Они встречаются в придонных слоях морских вод близ устьев рек и на некоторых крутых участках дна. Это потоки воды, сильно насыщенной взвешенными твердыми частицами и представляющей собой суспензию. Такой поток имеет высокую плотность и подобно наждачной бумаге способен эродировать дно или даже вызывать подводное оползание донных осадков. Вообще подводные оползни, даже происходящие по другим причинам, представляют значительный интерес для исследований и могут быть вызваны экспериментальным путем. Наши плавания на подлодке «Южанка» показали, что легкого касания корпуса лодки достаточно, чтобы толща накапливающегося осадка пришла в движение и подводная лавина устремилась вниз по склону.

При посадке на грунт создаются возможности для точного измерения оптическим путем незначительных придонных течений, скорость которых меньше, чем порог чувствительности вертушек или других электромеханических приборов. Нужно лишь пронаблюдать за любой взвешенной частицей, дрейфующей в освещенном объеме, и измерить скорость дрейфа.

С подводной лодки, совершившей посадку на грунт, удалось измерить скорость звука в донных осадках на значительных глубинах. На мелководье такие замеры выполняются легкими водолазами. Таким же образом, вероятно, можно измерить «тепловое дыхание Земли» и получить характеристики слабых геотермических потоков.

Новые возможности, которые нельзя реализовать с надводного судна, открывает установка на подлодке эхолотов «вверх ногами», то есть с вибраторами, обращенными вверх. Например, такой способ позволил нам, когда мы проходили на «Северянке» сквозь скопление атлантической сельди, определять его плотность, зондируя пространство над лодкой и под ней. На «Северянке» верхним эхолотом определяли высоту и период волнения, бушевавшего где-то высоко над головой. Нам, в сущности, удалось автоматизировать процесс наблюдения над волнами - «валами морскими». Так их назвал в начале XIX века известный мореплаватель командир брига «Рюрик» лейтенант О. К. Коцебу, которому также принадлежат слова: «Теория сего движения еще весьма несовершенна и самый предмет столь скоротечен и мало удобен к объятию».

Обращенный вверх эхолот, доставленный подлодкой под лед, позволяет также измерять форму, толщину и плотность ледового покрова.

И наконец, оптика моря. Нужная направленность подводных оптических приборов - первое условие для точных измерений. На надводном судне, которое сносится ветром во время дрейфа, выполнить это условие не всегда позволяет наклонное (не вертикальное) положение кабель-троса. При стоянке на якоре кабель-трос отклоняется течением.

Другая помеха подводным оптическим измерениям - это прямой солнечный свет, отражаемый бортами надводного судна, или же затенение от его корпуса. Ошибки наблюдений в этом случае будут существенными.

И опять мы скажем, что выход здесь - в использовании подводной лодки, которая способна стать основным средством для оптических исследований. Приборы устанавливаются прямо на корпусе подлодки. Уже первые разовые наблюдения из «Триеста» показали, что предел восприятия человеком дневного света находится на глубине между 600 и 700 метрами (по расчетам - на 800 метрах). Систематических же работ по установлению предела глубины, ниже которого яркость становится слабее чувствительности глаза, для разных морей и океанов до сих пор не проводилось. Важный вклад в практику измерений и теорию дальности видимости под водой внес советский исследователь О. А. Соколов, использовавший для этой цели «Северянку». С помощью «Ныряющего блюдца» французские исследователи измеряли у берегов Корсики яркость погружаемой на различную глубину лампы с горизонтальным удалением от нее 360 метров. Как оказалось, человеческий глаз в условиях эксперимента смог различать лампу в 500 ватт на расстоянии до 275 метров.

Но это лишь часть задач из области оптики, решение которых под силу подводной лодке.

Преимущество пятое. Оторвавшись от поверхности и погрузившись на глубину или совершив посадку на грунт, подводная лодка превращается в относительно стабилизированное основание. А это значит, что и аппаратура и наблюдатели могут работать и получать результаты при любом состоянии моря.

Уже при волнении 3-4 балла работы со многими опускаемыми за борт приборами, в том числе и с малыми подлодками, на надводных научно-исследовательских судах прекращаются.

Американский исследователь Уильям Кроми указывает: «Порою на то, чтобы спустить якоря, провести измерения и сняться с якоря, уходило четыре дня». (Кроми имеет здесь в виду работу на глубине до 3,5 мили.) А свежая и штормовая погода, на которую в Мировом океане приходится около 20 процентов года, означает для надводных экспедиционных судов мертвый сезон. Если не считать, конечно, попутных наблюдений, которые удается провести в это время. Качка заставляет корпус судна вибрировать, отрицательно влияет на эксплуатационный режим приборов, на самочувствие и работоспособность людей. Если прибор на качке опущен за борт, то он вносит возмущения в окружающую среду. Этот фактор, конечно, отрицательно влияет на достоверность показаний. Но он, к сожалению, пока никак не контролируется. Даже огромные современные научные лайнеры типа «Академик Курчатов» или «Космонавт Владимир Комаров», оборудованные успокоителями качки, испытывают во время шторма неприятные минуты. Что же тогда говорить об исследовательских судах среднего и малого тоннажа?

Из физики моря известно, что с увеличением глубины погружения резко уменьшаются радиусы орбит вращения частиц воды. То есть силы, вызывающие качку, уменьшаются. На глубинах, составляющих примерно половину длины волны, волновое движение ослабляется настолько, что им практически можно пренебречь. Достаточно подводному судну во время шторма погрузиться на несколько десятков метров, чтобы попасть в обстановку относительного покоя. Я пишу «относительного» потому, что поверхностное волнение, как известно, может быть источником особого вида внутренних волн, влияние которых на подводные операции изучено еще недостаточно. Сейчас трудно анализировать причину явлений, с которыми мы встретились в Норвежском море и от которых нас отделяет несколько лет. Но, может быть, именно вызванные штормом внутренние волны заставляли «Северянку», укрывшуюся от непогоды на глубине 50 метров, время от времени накреняться то на один, то на другой борт до 5 градусов. Но это исключение. Обычно пребывание на глубине - это плавание в спокойной во всех отношениях обстановке, и подводники предпочитают погружение качке на поверхности. Погрузиться во время шторма и долго находиться под верхним штормовым слоем моря могут лишь автономные большие подводные лодки.

Еще в 30-х годах нашего столетия военные подводные лодки стали использоваться в качестве стабилизированных платформ для гравиметрических измерений, то есть определения силы тяжести в море. В основу измерений заложен принцип маятника, требующий спокойной обстановки. Таким способом выполнено не менее б тысяч измерений. Некоторые из них были сделаны во время посадки на дно, как, например, с исследовательской лодки «Триест». Эта лодка выполнила серию наблюдений на значительных глубинах впервые, а также проверила некоторые предшествующие наблюдения.

Итак, перечислены и более или менее детально рассмотрены основные доводы в пользу применения для исследовательских работ подводных судов. К сожалению, их справедливость разделяется пока не всеми океанологами. Правда, спектиков со временем становится меньше. Но интересно то, что среди несогласных нет ни одного, кто или в подводной лодке, или в гидростате, или просто с аквалангом опускался бы под воду.

Те же, кому удалось поработать и на палубе надводного исследовательского судна и в тесном отсеке субмарины, всегда высказываются в пользу более широкого применения подводных лодок для изучения океана.

Говорят, что достаточно одного погружения, чтобы превратить обычного, то есть надводного, океанолога в подводного. Именно это и случилось, например, с моими коллегами по «Северянке» гидрооптиком О. А. Соколовым, ихтиологами Д. В. Радаковым и Б. С. Соловьевым, морским геологом Д. Е. Гершановичем и многими другими, «прикоснувшимися» к подводному миру и безоговорочно признавшими научную силу глубинного судна.

Конечно, полная реализация всех названных возможностей в каждом конкретном случае будет зависеть от технических характеристик и научного оборудования отдельной реальной подводной лодки. Сегодня еще не существует подводного корабля, который бы по своим качествам полностью удовлетворял всем пяти выдвинутым положениям.

Впрочем, верно и другое: по существу, нет и надводного судна, которое удовлетворяло хотя бы одному из них. Создание в будущем такой универсальной лодки, которая «может все», - это не фантастика, а разрешимая техническая проблема, хотя и достаточно сложная. Другой вопрос - есть ли необходимость в таком многоцелевом средстве. А может быть, правильнее создавать лодки специализированные для выполнения узкого круга научных задач? Сделать это легче, дешевле, и поэтому второй путь представляется сейчас более правильным.

И при всем этом нужно помнить, что пока подводные лодки, способные погружаться на километровые глубины, не могут быстро и долго плавать в горизонтальном направлении. И наоборот, для способных к длительному подводному плаванию лодок большие глубины недостижимы. Большинство же исследовательских лодок не может ни глубоко погружаться, ни долго и быстро плавать. Кроме того, их работа в море связана с целым рядом ограничений, влияющих на эффективность использования.

предыдущая главасодержаниеследующая глава







© UNDERWATER.SU, 2001-2019
При использовании материалов проекта активная ссылка обязательна:
http://underwater.su/ 'Человек и подводный мир'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь