Уровень развития видов животных определяется многими признаками и прежде всего характером организации нервной системы. Бесспорно, дельфины, как и весь отряд китообразных, обладающие крупным, сложно устроенным мозгом, стоят на высокой ступени развития. Выделяется прежде всего шестислойная кора больших полушарий. У афалин и гринд предположительно она содержит до 30 млрд. нервных клеток. Относительный вес ее мозга достигает 1,25% веса тела. Поверхность мозга сильно увеличивается благодаря большому количеству извилин. Площадь коры, скрытая внутри извилин, у дельфинов составляет 75-85% всей площади коры, что выше, чем у человека (64-67%). Значительно развиты также промежуточный и средний отделы мозга и мозжечок.
Сразу же возникают вопросы : что может такой мозг, для чего дельфинам столь сложная организация нервной системы и правомерно ли ей приписывать функции, специфические для человеческого сознания, в частности речь и понятийное мышление?
Американский нейрофизиолог Джон Лилли отвечал на эти вопросы очень просто: мозг дельфина стоит на одном (или даже более высоком) уровне с мозгом человека и потенциально способен на то же самое, на что и человеческий мозг. Такой орган, по мнению Лилли, обеспечивает дельфинам речевое (словесное) общение друг с другом и в будущем позволит осмысленно разговаривать с человеком, в результате чего наука сделает грандиозный скачок вперед. Лилли исходил из того, что есть критический размер мозга (1 кг), ниже которого язык невозможен. Поскольку средний вес мозга у афалины (1700 г) больше, чем у человека (1400 г), то ум обоих следует поставить по крайней мере в один ряд.
Большинство биологов разных стран (Рене Бюснель, Вильям Таволга, Грэгори Бэтсон, Форрест Вууд, Дэвид и Мельба Колдуэллы и многие другие) отрицают существование настоящего языка у дельфинов. Сам же Лилли не смог доказать правоту выдвинутой им гипотезы, и в 1967 г. закрыл свою лабораторию на о-ве Сент-Томас, где проводил эксперименты.
В поддержку языковой гипотезы Джона Лилли приводились следующие соображения: сложный мозг дельфинов внешне сходен с человеческим (вес, шаровидная форма, обилие извилин, соотношение веса больших полушарий и мозжечка, близкое число нервных волокон в 1 см3); дельфины очень понятливы и легко обучаются; их акустические сигналы, издаваемые сложным звукосигнальным аппаратом в верхней части дыхательного пути, весьма многообразны (В. Эванс и Д. Дреер у трех видов дельфинов выявили 32 разных свистовых контура); в свистах существуют индивидуальные различия, по которым можно распознавать дельфинов персонально; некоторые афалины способны подражать словам человека (о том свидетельствуют сонограммы, записанные Джоном Лилли); дельфины, посаженные в два отдельных бассейна, между которыми работает электронная связь, проявляют интерес к голосам сородичей (Томас Ланг и X. Смис наблюдали пересвистывание афалин, находившихся в разных танках, но слышавших друг друга; по свидетельству прессы, был осуществлен даже радиообмен сигналами между дельфинами, находящимися во Флориде и на Гавайских о-вах, с расстояния 8000 км); в экспериментах со звукообменом подопытные дельфины не нарушают молчания, пока "говорит собеседник"; и, наконец, некоторые дельфиновые свисты повторяются при воссоздании тех же самых условий окружения, в которых эти сигналы производились раньше.
Все перечисленные доводы, однако, хотя и свидетельствуют о высоком развитии ума дельфинов, не доказывают наличия у них языка и абстрактного мышления.
В самом деле, у дельфинов большой размер мозга с огромным числом нейронов и множество извилин в нем не обязательно могли развиваться в связи с речью. Вес мозга относительно веса тела сам по себе еще ни о чем не говорит. У человека мозг составляет 1/34 веса тела. Но есть обезьяны в Южной Америке, относительный вес мозга которых выше, чем у человека (у капуцина - 1/18, а у черной коалы - до 1/15 веса тела). Однако никто не считает этих низкоорганизованных широконосых обезьян "умнее" человека. С другой стороны, имеются резкие индивидуальные отклонения в весе этого органа от средней нормы: например, мозг Анатоля Франса был на 400 г меньше, а у И. С. Тургенева на 600 г больше такой нормы, принятой для человека (1400 г.).
Легко поддаются дрессировке и очень понятливы не только дельфины, но и собаки, обезьяны, морские львы, лошади и другие животные.
Звукосигнальный орган разной сложности имеют многие животные, начиная от насекомых (саранчовые) и кончая птицами и млекопитающими.
Голосовая сигнализация дельфинов не является уникальной в животном мире ни по богатству сигналов, ни по характеру их использования. В неволе они обычно пощелкивают, посвистывают, повизгивают и похрюкивают на все лады. Однако многообразие этих звуков, в сравнении с богатством звуков других животных, несколько преувеличивается. Немецкий ученый Темброк, например, установил для лисицы 36 разных сигналов. Еще больше их обнаружено у гамадрилов и человекообразных обезьян. Во всех этих случаях сигналы отвечают тем или иным отношениям между сородичами и повторяются стереотипно в соответствии с обстановкой.
Индивидуальные оттенки в звуковой сигнализации свойственны почти всякому животному, обладающему голосом, а не только дельфинам; кто не знает, что хозяин может по лаю определить свою собаку из стаи в десятки голов?
Интерес к голосам сородичей и обмен сигналами проявляются у многих животных, например, в семьях обезьян, в стайках синичек и т. п. Спровоцировать ответ на искусственно подаваемые сигналы удается у многих млекопитающих и птиц. На этом основана охота с манком на рябчика и уток, с рогом на оленей и т. д.
Дельфины, если и могут в какой-то мере имитировать слова человека, то это же самое делают (только гораздо чище, членораздельнее) и другие животные - попугаи, скворцы, сороки, майны, не вкладывая в эти слова смысла, абстрактных понятий.
Ныне часто ссылаются на опыты калифорнийского психолога Джарвиса Бастиана, который в морской лаборатории военно-морского флота США в Пойнт-Магу якобы экспериментально доказал существование языка у афалин. Суть эксперимента была в том, что афалину-самца БЭС обучили подражать действиям самки Дорис - нажимать на один, другой или третий контакты с сигнальными лампами. Когда обоих животных в бассейне разъединяли непрозрачной перегородкой, чем исключали зрительный анализатор, то подражание в нажимании на тот или иной контакт было точным. Когда же перегородку делали еще и звуконепроницаемой (исключали слуховой анализатор), подражание стало ошибочным. Но стоило в перегородке сделать небольшое отверстие, через которое проходил звук, как подражание вновь стало правильным.
Комментаторы опытов Д. Бастиана объяснили точность подражания тем, что Дорис будто бы передавала информацию для БЭС с помощью языковых сигналов. Однако так толковать свой опыт не решился даже сам Бастиан, так как афалина БЭС могла следить за местоположением и действиями Дорис с помощью своего гидролокатора. Кроме того, сравнение свистов, издаваемых афалиной Дорис во время нажимания на разные контакты, не показало различий, которые должны были бы быть при языковой информации. Вот почему ссылки на опыты Бастиана неправомочны.
Советский нейрофизиолог член-корреспондент Академии наук СССР Н. П. Бехтерева, изучая психические заболевания и нейрофизиологические процессы, пришла к выводу, что в ответ на слова, которые слышит человек, в его мозгу возникают два кода - акустический и смысловой (семантический). Первый связан со звуковой характеристикой слова и свойствен также животным, например в тех случаях, когда те реагируют на свою кличку или исполняют команды с голоса дрессировщика. Второй связан со смысловой характеристикой слов и присущ только человеку. Именно в этом принципиальное отличие животных (в том числе и дельфинов с их сильно развитым акустическим кодом) от человека.
Язык, речь, слово свойственны только людям. Даже самую сложную сигнализацию животных нельзя отождествлять с речью человека. Язык - это высшая форма общения, с помощью которой могут быть названы и классифицированы вещи, выражены отвлеченные идеи, обсуждены и сделаны умозаключения, обговорены любая концепция и ситуация. Язык рассматривает события прошлого и будущего, называет то, что отсутствует в данный момент.
Животные не могут пользоваться словом сознательно, как отвлеченным понятием, хотя некоторые из них и могут скопировать (за награду) звук произносимого слова. Так делают живущие в неволе попугаи, скворцы, обезьяны или дельфины (в опытах Лилли), а у Владимира Дурова жила собака, четко произносившая слово "мама"; выговаривали слова "мама" и "папа" также обезьяны. Однако еще ни разу даже самые умные животные, будь то пернатые или млекопитающие (включая китообразных), не показали понимания имитируемых ими слов.
Таким образом, доказательств того, что дельфины пользуются языком, словесной информацией, до сих пор нет. За поведением дельфина не стоят мыслительные процессы, аналогичные нашим. Ни поведение, ни структурно-функциональная организация коры не подтверждают, что дельфины обладают свойствами человеческой психики, в которой не столько важны количество извилин, величина массы мозга и его поверхности, сколько сложность элементов и организации структур его коры. Научный сотрудник института мозга В. С. Кесарев, сравнивая микроструктуры мозга человека и дельфина, нашел в них существенные отличия. Шестислойное строение коры - общий признак мозга всех млекопитающих. Но организация нейронов в колонки - особенность мозга человека: оказывается, нейроны в виде зерен (2-й слой коры), пирамид (3-й слой), звезд (4-й слой), треугольных клеток (5-й слой) и веретен (6-й слой) располагаются друг под другом, образуя вертикальные колонки, которые могут работать и самостоятельно, и в комплексе с соседними. В слуховом анализаторе степень такой упорядоченности нейронов оказалась гораздо выше, чем в зрительном, что, видимо, обусловлено восприятием речи. Все эти сложные "архитектурные сооружения" человеческого мозга локализуются в новой коре - наиболее позднем эволюционном образовании, - занимающей 96% площади всей коры (древняя кора составляет лишь 0,6%).
У дельфинов же подобные колонки не обнаружены, а межуточная кора (второй, третий и четвертый слои) хотя и сильно разрослась, усложнилась и дифференцировалась, но не дошла до стадии новой коры, характерной для человека.
Заключение об отсутствии речи у китообразных не опровергают ни экстраполяционные рефлексы, установленные профессором МГУ физиологом Л. В. Крушинским, ни его опыты по сложным формам поведения дельфинов, оперирующих эмпирической мерностью фигур и воспринимающих различие плоских и объемных образов.
Но если у дельфинов нет настоящего (словесного) языка, то чем можно объяснить развитие их огромного головного мозга? Причины и обстоятельства для этого у них совсем другие, чем у человека: мозг дельфинов обслуживает потребности жизни в водной среде и определяет всю тонкость приспособительной деятельности в этих условиях. В воде у китообразных наиважнейшим органом чувств оказалось не зрение, как у наземных млекопитающих, а слух в сочетании с эхолокационным аппаратом.
Ведущую роль в развитии крупного мозга дельфинов сыграла, видимо, эхолокация как важнейший способ ориентации зубатых китов в океане и главный путь получения информации об окружающем. В естественных условиях эхолокационный аппарат используется ими на каждом шагу. Время между произведенным щелчком-сигналом и возвратом его эха указывает животным расстояние до любого объекта на их пути. В связи с этим отрабатывается тончайшее управление движениями своего тела. Для переработки поступающих эхо-сигналов потребовался высокоразвитый головной мозг. Не случайно в мозге дельфинов обнаружены некоторые преимущества перед мозгом человека именно в области слуховой системы.
Мозг дельфинов имеет мощное развитие подкорковых образований, с которыми связана работа эхолокационного аппарата и обработка звуковой информации. Способность пользоваться ультразвуком у дельфинов связана с отделами, лежащими в глубоких слоях мозга. Советский ученый В. П. Зворыкин нашел у этих животных черты превосходства в слуховой подкорке, развитой сильнее, чем у людей; оказалось, например, что по объему верхняя олива мозга у дельфина ев 150 раз больше, чем у человека.
Сильному развитию мозга дельфинов благоприятствовали также:
1) большая скорость плавания и быстрая смена внешних условий при нырянии (и то и другое устраняло сенсорную недостаточность; относительное укрупнение мозга, или цефализация, интенсивнее у скоростных видов);
2) выдвижение на первое место из органов чувств слухового анализатора, воспринимающего в очень широком диапазоне акустические колебания (от десятков герц до 170 кГц); это обстоятельство расширяло поток поступающей информации;
3) работа локатора на высоких частотах, позволявшая передавать больший объем информации и за более короткий срок, чем при работе на низких частотах;
4) отличная звукопроводимость моря и высокая (в 4,5 раза большая, чем в воздухе) скорость распространения звука в воде, вызывавшая необходимость мгновенного ответа животного (поэтому дельфин на звуковые раздражители отвечает быстрее человека);
5) стадный и семейный образ жизни и совместная охота за рыбой (на основе общения у дельфинов формировались различные коммуникационные сигналы - разыскивания и преследования добычи, страха, угрозы, доминирования, бедствия и др.; эти сигналы компенсировали невозможность использования в воде мимики и жестов);
6) продолжительное совместное пребывание детенышей и родителей, обогащавшее индивидуальным опытом молодых особей.
Все это и обусловило в ходе эволюции сильное развитие центральной нервной системы дельфинов, причем эхолокация, используемая "на все случаи жизни" и ставшая важнейшим средством ориентации, навигации и получения информации об окружающем, явилась, вероятно, главным фактором в формировании крупного головного мозга зубатых китов*.
* (Не противоречит ли этому положению тот факт, что рукокрылые и ластоногие, тоже пользующиеся эхолокацией, имеют небольшой мозг? Однако рукокрылые живут в воздушной среде, где эхолокация не может быть столь эффективной, как в воде, а ластоногие имеют эхолокацию лишь в зачаточном состоянии)
Это соображение можно подкрепить сопоставлением кашалота и усатых китов. Для последних эхолокация не доказана, и мозг их, по общему признанию специалистов, развит слабее, чем у зубатых китов. Кашалоту чаще, чем другим зубатым китам, приходится пользоваться эхолокацией, так как питается он в зоне вечного мрака, на глубине до 1-2 км. Вероятно, поэтому его мозг занял рекордное место среди живых существ планеты как по абсолютному весу (9,2 кг у самца длиной 14,9 м), так и по числу извилин на поверхности коры больших полушарий. Это не означает, конечно, что кашалот - умнейшее животное в отряде, но он, видимо, обладает крайне специфической ориентацией - звуковидением, в основе которого лежит эхолокация*.
* (У кашалота имеется сравнительно богатый ассортимент и коммуникационных сигналов: Пауль Перкинс, Мария Фиш и Вильям Моубрэй в Атлантическом океане с помощью гидрофона у этого вида записали восемь разных сигналов частотой от 0,7 до 16,6 кГц. Среди сигналов имелись варьирующие свисты, щебетание, чириканье, гудение, пронзительные крики, скрежет, резкий лай и хрипы)
Гипотезу о слуховом аналоге органа зрения у зубатых китообразных первым выдвинул московский инженер-акустик А. Е. Резников, считающий, что акустическая линза лобной области дельфина фокусирует звуковые изображения предметов на стенки тканей воздушных мешков. Чуть позже киевский физиолог В. А. Козак разработал идею об акустическом зрении кашалотов, проводящих большую часть жизни в условиях темноты. Исполинскую голову кашалота В. А. Козак уподобляет гигантскому плавающему звуковому глазу, в котором есть и "сетчатка", и "линза", и "стекловидное тело", и сложный нервный аппарат. К вогнутой передней стенке черепа кашалота примыкает полость - фронтальный воздушный мешок. Внутри этого мешка на его задней стенке ученый обнаружил 3-4 тыс. пузырьков, размером от горошины до голубиного яйца (рис. 18).
Рис. 18. Схема строения глаза наземного млекопитающего (А) и 'звукового глаза' кашалота (Б). Световой луч проходит через оптические структуры - роговицу и хрусталик (а), светопреломляющее стекловидное тело (б) и попадает на сетчатку (г), а далее импульс следует по нервным путям (д) в мозг. Звуковой луч при эхолокации проходит через акустические структуры: обтекаемую наружную часть головы кашалота и акустическую линзу (а1), звукопроводящий спермацетовый конус (б1) и попадает на рецепторный пузырчатый экран (г1), и далее импульс по нервам (д1) попадает в мозг. Мышцы глаза (в) фокусируют световые, а мышцы конуса (в1) - звуковые изображения на рецепторную систему
Пузырьки отделены друг от друга звукоизолирующими воздушными колечками, заполнены жидкостью, сильно иннервированы и снабжены огромным количеством рецепторных клеток - на пузырьковом экране их 30-40 млн. Это пузырчатое поле - своеобразная сетчатка, позволяющая воспринимать звуковые образы, аналогично зрительным образам, воспринимаемым глазом. Акустическую линзу в голове кашалота создает уплотненная ткань, расположенная впереди верхнего спермацетового мешка. Эта "линза" концентрирует и направляет звуковые лучи на пузырчатый экран. Верхний спермацетовый мешок, прозрачный для звуковых лучей, играет роль стекловидного тела и служит звукопроводом. При эхолокации отраженный от объектов звуковой луч падает на переднюю стенку головы кашалота, проходит, концентрируясь, через плотную линзу в вытянутый спермацетовый мешок и попадает на пузырчатое рецепторное поле фронтального мешка. Отсюда раздражение поступает в соответствующий центр головного мозга, где и создается звуковой образ.
Рецепторное пузырчатое поле обнаружено пока только у кашалотов. Звуковидение для этих животных, питающихся в полной темноте, жизненно необходимо и позволяет даже слепым особям иметь нормальную упитанность. Орган акустического зрения кашалота формировался для работы на глубинах, где протекала большая часть его жизни. В ходе эволюции глаза его все больше и больше сдвигались на бока головы, а вперед выдвигалась звукопреломляющая акустическая линза и спермацетовый мешок - акустический канал-волновод.
Все это, вместе взятое, и привело к развитию гигантской, нелепой по форме головы кашалота с рекордной массой головного мозга.
В заключение главы отметим, что надежды научить афалину сознательно пользоваться человеческой речью наивны и беспочвенны, ибо нельзя наследственно обусловленную и отработанную за миллионы лет природу дельфина в короткий срок, с помощью даже самой изощренной дрессировки, переделать на человеческий лад, забывая при этом роль эволюции и силу наследственной информации.